Java core
Syntax

Autoboxing/Unboxing
Starting JDK 5 JVM automatically performs wrapping/unwrapping types like Integer, Long, Boolean to corresponding primitive

Example:

Integer x = 5;

Performance and byte code wise this is equivalent to:

Integer x = new Integer(5)

Another example:

Long x = 0L

for(;x<25;x++){}
Annotations

(JDK 5)They affect the way programs treated by tools and libraries, but not a program itself. Basically whatever gets a hold of class/method/variable using reflection (see Reflection, AnnotatedEntity interface implemented by Class, Enum, Field,Package, Method and AccesibleObject) may get annotations and perform some actions. Example:

@Overrride
public int hashCode(){…}
To define your own custom annotations:

public @interface RequestForEnhancement {

 int id();

 String synopsis();

 String engineer() default "[unassigned]";

 String date(); default "[unimplemented]";

}

To use it later

@RequestForEnhancement(

 id = 2868724,

 synopsis = "Enable time-travel",

 engineer = "Mr. Peabody",

 date = "4/1/3007")
public void Test(){…}
Vararg

(JDK 5)

Example:

public void test(String… a){

 for(String s :a) System.out.println(s);

}

To call test:

test(“one”,”two”,”three”)
Generics

(JDK 5)Provides compile time type safety.

Example:
List<String> x = new ArrayList<String>();

Allows wild cards l

? – any type

? extends SomeClass – any class that extends SomeClass

Generic type information is only for compile time checks and is not available runtime. (This is called type erasure). At runtime all objects represented by raw type classes.

Another generic example:

public <T extends Throwable> void test(T e) throws T

{

throw e;

}

Enum

(JDK 5)Fix set of predefined constants
Example

public enum Test{Test1,Test2,Test3}

public void doIt(Test t)

{

Switch(t)

{

Case Test.Test1:

Sytem.out.println(“test”);

break;

}

}

Enum always extends java.util.Enum. Enum can implement interfaces, but can not extend classes or other enums. Enum can declare abstract methods overridden by each defined constant. Enum can only have private constructors.

Interface vs Abstract class

	
	Interface
	Abstract class

	Constants (static final)
	Yes (implied public static final)
	Yes

	Static varaiables
	No
	Yes

	Instanse variables
	No
	Yes

	Static methods
	No
	Yes

	Method definitions
	No (implied public)
	Yes

	Constructors
	No
	Yes

	Extend other classes
	Only extends other interfaces
	Yes

	Define inner classes and interfaces
	Only inner static interfaces
	Classes and interfaces, static or not

Children can extend only one abstract class, but can implement multiple interfaces
Example

Interface X{

Int a = 0; // public static final is implied

}
final keyword

Class – class cannot be extended

Method – method cannot be overwritten

Variable – value cannot be changed after initialization. It also means that this object guaranteed initialization safety by JVM, meaning no thread can get it in unstable state.
inheritance /method overriding and overloading
Overriding – in subclass method with the same name and arguments as in parent returns the same type or subclass of that type.

Overloading method with the same name and different arguments in the same class

Overloading resolved at compile time and overriding at runtime.

Access modifier on overriding method cannot be more restrictive than on original method – polymorphism will break otherwise.

Overriding method can only throw exceptions that parent method throws or its subclasses, or not throw anything – in this case you don’t need to handle it.
Arrays

System.arraycopy – fast copy arrays.

Array problem with polymorphism:

Class A{}; Class B extends A{};

A[] = new B[1];

A[0] = new A();

Results in ArrayStoreException
Convertions

Type of the result of primitive operation defined by type of operands, i.e. 3/5 will be an integer, that means that:

double l = 3/5 is actually 0.
Core classes

hashcode/equals

Methods defined in java.lang.Object – so available to any class.

Hashcode, by contract: during one execution always returns same value if the object is unchanged. If equals for 2 object returns true, hashcode returns same value.
Time and TimeZone

String, String collators
String - immutable final class Hashcode is calculated on first request and cached after that.

String.CASE_INSENSITIVE_ORDER – case insensitive comparator implementation (uses compareToIgnoreCase)

Also, Collator class could be used for String comparison – available for different locales, with different strength of comparison (4 strengths available meaning is locale specific) Decomposition settings available for accented languages.
StringBuilder introduced in JDK 5 as not thread safe version of StringBuffer. Provides better perfomance
Formating

System
Serialization

Recommended for serialized classes define class version as static final long serialVersionUID

Fields marked as transient are not going to be serialized

If class implements Serializable it applies to all subclasses

Static variables are not considered part of class state and not serialized. (you need to do it manually if you have to)

Class to be serializable should have an access to no-argument constructor of first not serializable superclass.

Collections like Vector and Hashtable designed to be Serializable. To be able to serialize such collection you should be able to Serialize all of its members.

For manual control over Serialization implement special methods (writeObject/readObject)
Reflection

Allows runtime access to class definitions. You can use setAccesible(true) to get acces to private fields. May be restricted by running application with SecurityManager enabled.
I18n

Implemented using ResourceBundle class
Collections

Iterable, RandomAccess

All collections implement Iterable – have “iterator” method. Collections implemented RandomAccess allow navigation using indexing
Collections, Arrays util classes
2 utility classes, Collections and Arrays provide common operations on arrays and collections. Most common operations:

Sort – in both Arrays and Collections. Elements class should either implement Comparable interface or class implementing comparator has to be provided

Arrays.asList – converts array to list

Collection.synchronized… - returnes thread safe version of collection.

If iterator is used and collection changed outside of iterator, iterator will throw ConcurrentModificationException (even on “thread safe” collection like Vector.) on the first call to next, remove, or other method. Contract is this exception is not guaranteed by iterator implementation and done on best-effort basis

Lists

Vestor – threadsafe, ArrayList is not. Both implement RandomAccess interface.

LinkedList – double linked list implementation, implements Queue interface, good performance on modifications
Sets

Set – gurantes unique objects in collection, according to object equals function, and at most one null element. The behavior of Set is not specified if object is mutable and was changed after put in the Set.
HashSet – can have null, not thread safe, no guarantee for iteration order, Iteration performance depends on backing HashMap capacity, so don’t set it to high without a reason.

LinkedHashSet – can have null, not thread safe, guaranties insertion order, iteration performance depends on actual set size, add/remove/set operations are more expemsive that HashSet since has to keep LinkedList.

TreeSet – cannot have null, not thread safe, guarantees ascending order according to natural order (comparable implemented by objects) or by comparator provided
Maps

HashMap – null key and null values, not thread safe, no order guaranties. Capacity – number of buckets in the hash table. Load factor – how full hash table has to be before capacity automatically increased by executing rehash method. Default load factor is 0.75.

Hashtable – null keys and values are not allowed, thread safe. Other thatn that identical to HashMap.

LinkedHashMap –garanties insertion order, not thread safe, nulls allowed.

TreeMap – null keys are not allowed, not thread safe, guaranties ascending order by keys natural order (comparable implementation) or by Comparator provided. Note that compareTo result should be consistent with equals implementation in properly implemented Map.
EnumSet, EnumMap
Specialized implementations to deal with enums.

I/O

Streams vs Readers

Streams manipulate bytes; Readers/Writers manipulate chars under the encoding.

Pipes - there pairs of PipeInputStream/PipeOutputStream and PipeReader/PipeWriter. Usualy one thread is writing data to output stream and another reads data from input stream
NIO

File I/O

MemoryMappedFiles

Use ByteMappedBuffer, you can get it from FileChanel, that is available from FileInputStream or RandomAccessFile

Example :

try {

 // Create a ByteBuffer on a memory-mapped file

 File file = new File("filename");

 FileChannel channel = new RandomAccessFile(file, "rw").getChannel();

 MappedByteBuffer buf = channel.map(FileChannel.MapMode.READ_WRITE, 0, (int)channel.size());

 // Make a change to the ByteBuffer

 buf.put(0, (byte)0xFF);

 // Force the change to the file system

 buf.force();

 // Close the file

 channel.close();

 } catch (IOException e) {

 }
Buffers

There is one subclass of Buffer for each not Boolean primitive type. Buffer has capacity (its size), limit and position.
Threads

Classes/Interfaces

Implement interface Runnable or extend Thread class to create a thread.

To run a thread use Thread.start(). To make a thread wait until another thread finishes use thread.join()

Thread.sleep – makes thread sleep for some time.

Thread.yeld() – makes thread to pause temporarely, aloowing other threads to execute
Issues

Deadlock – threads locked waiting on each other

Livelock – threads are busy and preventing each other to make any progress

Starvation – threads can not get to the required resources

Priority inversion – high priority thread waits on the lock by low priority thread
Synchronize/volatile
Problems with data accessed by multiple threads:

1. Unsafe initialization

2. Non atomic changes

3. Changes by one thread are not visible by other threads

Synchronization guaranties atomicity on a sequence of non atomic operations and visibility

Volatile guaranties visibility and atomic read/writes for long, doubles or references (other primitive types are atomic without this modifier)
Vaolatile is cheap way of synchronization if you can gurantee that chages are done by only one thread.

Note, that while

a++

looks like one operation, in reality there are 3 operation there :
1. Read a

2. Increment a

3. Write a

So a++ on volatile variable is not thread safe. A way to implement something like that efficiently you can wrap a into a class with synchronized Increment operator and not synchronized get, declaring a volatile.

Wrapping data into ThreadLocal means that data available only to current thread.
Atomic variables

Classes AtomicInteger, etc… take advantage from CPU’s being able to perform Check-And-Save operation (if value equal a, make it b) in one command. Operation made on those classes are guaranteed to be atomic and visible by all threads without volatile modifier or synchronization
Wait/notify

Java.langObject has wait/notify method pairs. Those methods can be called from synchronized block. After Object.wait was called, Thread will release that object monitor and pause until some other thread calls Object.notify

Memory Mgmt

References

WeakReference – don’t prevent objects from being finalized. Used in WeakHashMap implementation

SoftReference – released when at disgression of Garbage collection with regards to memory demand
Garbage collection

System.gc() – request to run garbage collection, not guaranteed to run. –XX:disableExplicitGC jvm option makes JVM to ignore those requests.
Serial – efficient on single CPU core machines
Parallel – multiple CPU cores

Concurent – to keep GC pauses shorter at he expense of higher CPU usage

JVM options

ms – initial heap
mx – max heap
-XX:MaxPerSize – max PermGen space
-XX:PermSize – initial PermGen space

Total JVM memory use will be ms + PermSize

-XX:+CMSPermGenSweepingEnabled -XX:+CMSClassUnloadingEnabled – use with concurrent GC to manage PermSpace size issues.
JAAS

Subject is a person using application, has Principals
Principal – represents identity or a Roles, and have permissions
Permission – implemetting class and mask

LoginContext – loads login modules
LoginModule – implementation of login

(not static) AccessControl.checkPermission(Permission)

Subject.doAs(Subject, PriviledgedAction)

(not static) Accesscontrol.doPriviledge(PriviledgeAction())
To enable JAAS you need to provide JVM options to specify SecurityMamager and policy file.

JCE

JDBC

Database connectivity.

Get driver, create connection, etc.

It is better to use PreparedStatement to avoid SQL injection problems.

CallableStatement will execute stored procedures.

You create a Statement (Connection.createStatement), execute it (Statement.executeQuery), get ResultSet and navigate through it. Close all objects in final block to make sure that they always closed.
Scrollable result set - connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);

Example:

Connection connection = null;

Statement stmt = null;

ResultSet rs = null;

 try {

 // Load the JDBC driver

 String driverName = "oracle.jdbc.driver.OracleDriver";

 Class.forName(driverName);

 connection = DriverManager.getConnection(url, username, password);

 stmt = connection.createStatement();

 rs = stmt.executeQuery("SELECT * FROM my_table");

 } catch (ClassNotFoundException e) {

 // Could not find the database driver

 } catch (SQLException e) {

 // Could not connect to the database

 }

 finally{

 if(rs!=null)try{rs.close();}catch(Exception){};

 if(stmt!=null)try{ stmt.close();}catch(Exception){};

 if(connection!=null)try{connection.close();}catch(Exception){};

 }

Database Metadata:

DatabaseMetaData dmd = connection.getMetaData();

dmd.supportsBatchUpdates()

dmd.supportsResultSetConcurrency(ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE)// Updatable result sets are supported

dmd.supportsBatchUpdates()

dbmd.getMaxTableNameLength()
Prepared statement:
PreparedStatement s = connection. prepareStatement(“select * from table where column=?”);
Callable statement:
Store procedure:

CallableStatement cs = connection.prepareCall("{call myprocinout(?)}");

cs.registerOutParameter(1, Types.VARCHAR); //if there is out parameter

cs.setString(1, "a string");

cs.execute();

outParam = cs.getString(1); // OUT parameter

Function:

// Call a function with one IN/OUT parameter; the function returns a VARCHAR

CallableStatement cs = connection.prepareCall("{? = call myfuncinout(?)}");

cs.registerOutParameter(1, Types.VARCHAR);

cs.registerOutParameter(2, Types.VARCHAR);

cs.setString(2, "a string");

cs.execute();

retValue = cs.getString(1); // return value

outParam = cs.getString(2); // IN/OUT parameter

Scrollable ResultSet

Statement stmt = connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);

ResultSet resultSet = stmt.executeQuery("SELECT * FROM my_table");

resultSet.next()

resultSet.previous()

resultSet.first();

resultSet.last();

resultSet.afterLast();

resultSet.beforeFirst();

resultSet.absolute(2);

resultSet.absolute(-2);

resultSet.relative(5);

resultSet.relative(-3);

Updatable ResultSet

Statement stmt = connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

// Primary key col_string must be specified so that the result set is updatable

ResultSet resultSet = stmt.executeQuery("SELECT col_string FROM my_table");
//Update a row

resultSet.first();

resultSet.updateString("col_string", "new data");

resultSet.updateRow();

//Insert a row

resultSet.moveToInsertRow();

resultSet.updateString("col_string", "new data");

resultSet.insertRow();
Batching:

try {

 connection.setAutoCommit(false);

 PreparedStatement pstmt = connection.prepareStatement(sql);

 pstmt.setString(1, ""+i);

 pstmt.addBatch();

 int [] updateCounts = pstmt.executeBatch();

 connection.commit();

 } catch (BatchUpdateException e) {

 int[] updateCounts = e.getUpdateCounts();

 connection.rollback();

 } catch (SQLException e) {

 }
Programming

Design patterns

Simple algorithms
Unit tests

JUnit 4 – annotation based.

@RunWith – on a class to set a runner

@Test – actual test method

@Test(expected=Exception.class) – exception expected as result of this method

@Before – run before each test

@After – after each test

@BeforeClass – run before all the tests from this class

@RunAfter – run after all the tests from this class

Mock library is used for unit testing. You create a mock object based on interface or an object, that you tell it what calls in what sequence and with what arguments to expect and what results give back in return, after that you give command to start and just run you test, passing this mock object to your code instead of a real one.
Databases

SQL

Stored procedures

Triggers

Transaction, isolations and problems

Issues:

Dirty reads – query may return data that was not committed by another transaction yet

Non-repeatable reads – different data on consecutive reads in the same transaction in the same rows

Phantom reads – different amount of rows in consecutive reads in the same transaction.

Isolation levels – by issuing different level read locks they illuminate some of the issues

Read uncommitted – all present

Read commited – solves dirty reads

Repeatable read - solves non-repeatable reads and dirty reads

Serializable – solves all

Snapshot isolation – (SQL Server) solves all. Based on optimistic locking. Each transaction obtains snapshot of the data and may proceed concurrently, but later there is a possibility of rollback if the same data got modified.
Hibernate

Versioning

Version or timestamp.

If version present, optimistic locking will be used.

Timestamps are less safe, but they may be used for other reasons.

Inheritance

If you extend a class specified in another document, you need to specify

Extends=”className”

On the subclass

On class you can set

polymorphism="implicit|explicit"
Syntax:

Table by subclass
Discriminator column specified, value of of that column defines a subclass used
<class name="Payment" table="PAYMENT">
 <discriminator column="PAYMENT_TYPE" type="string"/>
 <subclass name="CreditCardPayment" discriminator-value="CREDIT">

Table per subclass:
<class name="Payment" table="PAYMENT">
 <joined-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">
OR:
<class name="Payment" table="PAYMENT">
 <discriminator column="PAYMENT_TYPE" type="string"/>
 <subclass name="CreditCardPayment" discriminator-value="CREDIT">
 <join table="CREDIT_PAYMENT">
 <key column="PAYMENT_ID"/>
 <property name="creditCardType" column="CCTYPE"/>

Table per concrete class
Note, that here all the data, including inherited data has to be present in each table.
<class name="Payment">
 <union-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">

Relationship mapping

Fetch strategies

Fetch=”select|join” – select or outer join

Lazy=”Proxy|No-Proxy|false”, default proxy. It is a good practice to implement interface for classes, otherwise proxies may break inheritance. – A extends B does not mean AProxy extends BProxy.

Property-ref attribute allows you to point to unique column other than primary key:

<property name="serialNumber" unique="true" type="string" column="SERIAL_NUMBER"/>

Formula – if owning entity does not corresponf to primary key you can provide column or sql expression to join

Many to one:

<many-to-one name="product" class="Product" column="PRODUCT_ID"/>

<many-to-one name="product" property-ref="serialNumber" column="PRODUCT_SERIAL_NUMBER"/>

One to one:

<one-to-one name="person" class="Person"/>

<one-to-one name="employee" class="Employee" constrained="true"/>

<many-to-one name="person" class="Person" column="PERSON_ID" unique="true"/>

<one-to-one name="employee" class="Employee" property-ref="person"/>

Collections

Fetch=”join|select|subselect”; - outer-join fetching, fetching by sequential select, and fetching by sequential subselect.
Batch-size – optimization strategy for select, batch size for lazily fetching collections

lazy="true|extra|false" – default true, extra means that collection is not initialized until its members are accessed

inverse=”true” collection managed from the other side of relation
<set>, <list>, <map>, <bag>, <array>, <primitive-array>, <idbag>

Examples:

<set name="names" table="person_names">

 <key column="person_id"/>

 <element column="person_name" type="string"/>

</set>

<bag name="sizes" table="item_sizes" order-by="size asc">

 <key column="item_id"/>

 <element column="size" type="integer"/>

</bag>

<array name="addresses" table="PersonAddress" cascade="persist">

 <key column="personId"/>

 <list-index column="sortOrder"/>

 <many-to-many column="addressId" class="Address"/>

</array>

Indexed collections (Lists, maps, idbags) and sets are the most efficient collections to update
For bi-directional associations one end may be mapped with inverse=true. Changes made to inverse end of association are not persisted.
Bags and lists are the most efficient inverse collections
Hibernate.initialize, Hibernate.isInitialized – initialization of proxy or collection. (members not guaranteed to be initialized)

Main Session methods

Entity: get, load, persist, save, update, merge, delete, evict, lock, saveOrUpdate

Whole session: clear, flush, isDirty

Query: createQuery, createSQLQuery, getNamedQuery

Stateless session - == direct jdbc, high performance.

EJB2

Session Beans

Entity Beans

Deployment descriptors

JNDI

RMI

JPA

EntityManager, methods:

Entity: find, getReference, persist, merge, remove, lock

Whole session: clear, flush

Query: createQuery, createNativeQuery, createNamedQuery

Example:

@Entity

@Table(name="cont")

public class Containers implements Serializable {

@Id

@Column(name="ID", insertable=false, updatable=false)

private String uoiId2;

@Column(name="MAX_CHILD_SEQ")

private BigDecimal maxChildSeq;

@ManyToOne

private ContainerType type;

@ManyToOne

@JoinColumn(name="UOI_ID", insertable=false, updatable=false)

private Uois uoiId;

@OneToMany(mappedBy="source")

private Set<InheritedValuesCache> inheritedValuesCacheCollection;

EJB3

@Local

public interface BookTestBeanLocal {

public void test();

}

@Remote

public interface BookTestBeanRemote {

public void test();

}

@Stateless(name=” BookTestBean”, mappedName=”my/ BookTestBean”)

public class BookTestBean implements BookTestBeanLocal, BookTestBeanRemote {

@PersistenceContext

EntityManager em;

public void test() {

InitialContext ic = new InitialContext();

BookTestBeanRemote test = (CalculatorRemote) ic.lookup("my/BookTestBean/remote");

Core web
Servlets

ServerFilters

JSP

Tag libraries

Life cycles
JSTL

Web Application, Enterprise Application

Classloading
Clustering

Struts 2

Main elements

Actions

JSPs

Interceptors

Lifecycles

Action Results

Validation, conversion, i18n
Web Services

Protocols (REST, literal, RPC)

Interoperability

Frameworks Axis2, CFX, XFire

JAXB

Security
Spring

AOP and DI

Bean lifecycle

1. if post processor defined for a factory, and bean has a class and not defines factory-method - BeanPostProccesor postProccessBeforeInstantiations

2. Bean instance created (constructor, constructor and property set, factory method, bean factory method; if property is a Bean, it resolved and set) by system

3. if implements BeanNameAware – setBeanName

4. if implements BeanClassLoaderAware – setBeanClassLoader

5. if implements BeanFactoryAware – setBeanFactory

6. if post processor defined for a factory - BeanPostProccesor postProccessBeforeInitialization

7. if bean implements InitializingBean – afterPropertySet

8. if bean definition sets “init-method” – this method called

9. if post processor defined for a factory - BeanPostProccesor postProccessAfterInitialization

10. Bean used by application

11. if post processor defined for a factory - BeanPostProccesor postProccessBeforeDestruction

12. if bean implements DisposableBean – destroy()

13. if bean definition sets “destroy-method” – this method called

Bean definition

Spring MVC

Spring Security

Remoting

Spring – JPA
Spring- Struts 2

Spring (EJB2, RMI)

Spring – Axis2

Spring CFX(XFire)

Spring unit testing
XML

Java parsing

Validation

XSLT
Web 2.0

HTML, DHTML, CSS

JavaScript, DOM
AJAX

JSon vs XML

Flex3, BlazeDS
Dojo framework, JSExt, etc.

Search

Principles

Lucene

Lucene – search framework

Used for full text search

You create a Document class – object Lucene indexes

Add one or more Filed to document – values used for indexing

Field parameters:

Index: No, No_Norms, Tokenized, un_tokenized

Store: Compressed, Yes, No

TermVector: No, Yes, With_Offsets, With_positions, With_position_offsets

Term – unit of search, represents a word of text

And pass Document to

IndexWriter.addDocument function – this makes Lucene to index document.

Call IndexWrite.optimize and IndexWrite.close once you done main data entry.

Use IndexReader to remove document by Terms. Remove/Re-add a document to reindex it.

Hits IndexSearcher.search(Query, Filter) return Hits

Void IndecSearcher.search(Query, Filter, HitCollector) calls HitCollector.collect(int index, float score) for each hit

RAMDirectory – allows you to index in memory instead of file system.

Query – subclasses represent ways to build a query

QueryParser – parses query as a string implementation and returns corresponding Query subclass instance. Also allows you to build Query dynamically from pieces

To apply security permissions to search, you can:

Add terms to query (+role:editor)

Implement Filter interface

HitCollector + FieldCache

Query language:

Wild cards: *,? Can not be fisrt char

Quotes - combination

~ fuzzy searches and proximity searches

Range searches:

Dates: mod_date:[20020101 TO 20030101]

String: title:{Aida TO Carmen}

term^6 – boosting a term

Logical: OR, AND

() – grouping

+ - must be in search

Hibernate Search

Compass
J2EE Paterns and Best practices

Metodologies

Agile

Waterfall

Prototyping

Incremental

Spiral

Rapid Application development

Tools

IDE

Bug tracking

Source control

Security

SQL Injection

Cross Site Scripting

XML External Entity

Directory traversing, direct access, etc

SSL, FTPS

